Anticancer and anti-metastatic effects of metformin in cervical cancer: A narrative review
DOI:
https://doi.org/10.59692/jogeca.v33i5.467Keywords:
anticancer, anti-metastatic, cervical cancer, diabetes, nanoparticulate, metforminAbstract
Background: Cervical cancer is a significant cause of maternal morbidity and mortality despite concerted efforts towards its prevention. The high disease burden is attributed to the high prevalence of HIV, high treatment costs, and inaccessibility to treatment, particularly in developing countries. Multiple interventions, including metformin therapy, have been proposed for cervical cancer management. Metformin is a standard antidiabetic drug. In vitro studies have demonstrated mechanisms through which it can disrupt cervical cancer pathogenesis.
Objective: To review the literature on metformin’s anticancer and anti-metastatic effects in cervical cancer.
Methods: Literature searches were performed in the Google Scholar, PubMed, and ScienceDirect databases using keywords 'metformin', 'cervical cancer', and 'direct drug delivery’.
Results: Forty-four studies were included in this review. Metformin acts directly or indirectly on the molecular pathways involved in cervical cancer pathogenesis. Direct inhibition targets protein synthesis and angiogenesis, whereas indirect effects occur through increased insulin levels and the resultant decrease in glucose levels leading to glucose deprivation in cancer cells. The anti-metastatic effects of metformin are dose-dependent; therefore, high concentrations are required to achieve maximum effect. Direct drug delivery of metformin to tumor cells is viable to increase the bioavailability and minimize the systemic effects of metformin.
Conclusion: Metformin is affordable and readily available, with the potential to manage cervical cancer. High doses are needed to achieve anti-metastatic effects. Direct delivery of metformin may mitigate the adverse effects of the required high doses.
References
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. doi:10.3322/caac.21492
Denny L. Cervical cancer treatment in Africa. Curr Opin Oncol. 2011;23(5):469-474. doi:10.1097/CCO.0b013e3283495a3f
Stewart TS, Moodley J, Walter FM. Population risk factors for late-stage presentation of cervical cancer in sub-Saharan Africa. Cancer Epidemiol. 2018;53:81-92. doi:10.1016/j.canep.2018.01.014
Clifford GM, de Vuyst H, Tenet V, Plummer M, Tully S, Franceschi S. Effect of HIV Infection on Human Papillomavirus Types Causing Invasive Cervical Cancer in Africa. J Acquir Immune DeficSyndr. 2016;73(3):332-339. doi:10.1097/QAI.0000000000001113
Sengayi-Muchengeti M, Joko-Fru WY, Miranda- Filho A, et al. Cervical cancer survival in sub-Saharan Africa by age, stage at diagnosis and Human Development Index: A population-based registry study. Int J Cancer. 2020;147(11):3037- 3048. doi:10.1002/ijc.33120
Suissa S, Azoulay L. Metformin and cancer: mounting evidence against an association. Diabetes Care. 2014;37(7):1786-1788. doi:10.2337/dc14-0500
Heckman-Stoddard BM, DeCensi A, Sahasrabuddhe VV, Ford LG. Repurposing metformin for the prevention of cancer and cancer recurrence. Diabetologia. 2017;60(9):1639-1647. doi:10.1007/s00125-017-4372-6
Kim MY, Kim YS, Kim M, et al. Metformin inhibits cervical cancer cell proliferation via decreased AMPK O-GlcNAcylation. Anim Cells Syst (Seoul). 2019;23(4):302-309. doi:10.1080/19768354.2019.1614092
Xia C, Liu C, He Z, Cai Y, Chen J. Metformin inhibits cervical cancer cell proliferation by modulating PI3K/Akt-induced major histocompatibility complex class I-related chain A gene expression. J Exp Clin Cancer Res. 2020;39(1):127. doi:10.1186/s13046-020-01627-6
Kamura T, Ushijima K. Chemotherapy for advanced or recurrent cervical cancer. Taiwan J Obstet Gynecol. 2013;52(2):161-164. doi:10.1016/j.tjog.2013.04.003
Vu M, Yu J, Awolude OA, Chuang L. Cervical cancer worldwide. Curr Probl Cancer. 2018;42(5):457-465. doi:10.1016/j.currproblcancer.2018.06.003
Tseng CH. Metformin use and cervical cancer risk in female patients with type 2 diabetes. Oncotarget. 2016;7(37):59548-59555. doi:10.18632/oncotarget.10934
Baethge C, Goldbeck-Wood S, Mertens S. SANRA-a scale for the quality assessment of narrative review articles. Res Integr Peer Rev. 2019;4:5. doi:10.1186/s41073-019-0064-8
Cairns RA, Khokha R, Hill RP. Molecular mechanisms of tumor invasion and metastasis: an integrated view. Curr Mol Med. 2003;3(7):659- 671. doi:10.2174/1566524033479447
Folkman J. Seminars in Medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis. N Engl J Med. 1995;333(26):1757-1763. doi:10.1056/NEJM199512283332608
Obermair A, Wanner C, Bilgi S, et al. Tumor angiogenesis in stage IB cervical cancer: correlation of microvessel density with survival. Am J Obstet Gynecol. 1998;178(2):314-319. doi:10.1016/s0002-9378(98)80018-5
Green CE, Liu T, Montel V, et al. Chemoattractant signaling between tumor cells and macrophages regulates cancer cell migration, metastasis and neovascularization. PLoS One. 2009;4(8):e6713. doi:10.1371/journal.pone.0006713
Chen H, Suo K, Cheng Y, Zheng B, Xu L. Vascular endothelial growth factor C enhances cervical cancer migration and invasion via activation of focal adhesion kinase. Gynecol Endocrinol. 2013;29(1):20-24. doi:10.3109/09513590.2012.705387
Su JL, Yang PC, Shih JY, et al. The VEGF-C/Flt- 4 axis promotes invasion and metastasis of cancer cells. Cancer Cell. 2006;9(3):209-223. doi:10.1016/j.ccr.2006.02.018
Zhang W, Zhou Q, Wei Y, et al. The exosome-mediated PI3k/Akt/mTOR signaling pathway in cervical cancer. Int J Clin Exp Pathol. 2019;12(7):2474-2484
Liu X, Chen D, Liu G. Overexpression of RhoA promotes the proliferation and migration of cervical cancer cells. Biosci Biotechnol Biochem. 2014;78(11):1895-1901. doi:10.1080/09168451.2014.943650
Zhu D, Ye M, Zhang W. E6/E7 oncoproteins of high risk HPV-16 upregulate MT1-MMP, MMP-2 and MMP-9 and promote the migration of cervical cancer cells. Int J Clin Exp Pathol. 2015;8(5):4981-4989
Fan Q, Qiu MT, Zhu Z, et al. Twist induces epithelial-mesenchymal transition in cervical carcinogenesis by regulating the TGF-β/Smad3 signaling pathway. Oncol Rep. 2015;34(4):1787- 1794. doi:10.3892/or.2015.4143
Kloth JN, Fleuren GJ, Oosting J, et al. Substantial changes in gene expression of Wnt, MAPK and TNFalpha pathways induced by TGF-beta1 in cervical cancer cell lines. Carcinogenesis. 2005;26(9):1493-1502. doi:10.1093/carcin/bgi110
Zhao M, Wang S, Li Q, Ji Q, Guo P, Liu X. MALAT1: A long non-coding RNA highly associated with human cancers. Oncol Lett. 2018;16(1):19-26. doi:10.3892/ol.2018.8613
Liu S, Song L, Zeng S, Zhang L. MALAT1-miR- 124-RBG2 axis is involved in growth and invasion of HR-HPV-positive cervical cancer cells. Tumour Biol. 2016;37(1):633-640. doi:10.1007/s13277-015-3732-4
Hu D, Zhou J, Wang F, Shi H, Li Y, Li B. HPV- 16 E6/E7 promotes cell migration and invasion in cervical cancer via regulating cadherin switch in vitro and in vivo. Arch Gynecol Obstet. 2015;292(6):1345-1354. doi:10.1007/s00404-015- 3787-x
Paredes J, Figueiredo J, Albergaria A, et al. Epithelial E- and P-cadherins: role and clinical significance in cancer. Biochim Biophys Acta. 2012;1826(2):297-311. doi:10.1016/j.bbcan.2012.05.002
Zadra G, Batista JL, Loda M. Dissecting the Dual Role of AMPK in Cancer: From Experimental to Human Studies. Mol Cancer Res. 2015;13(7):1059-1072. doi:10.1158/1541- 7786.MCR-15-0068
Saxena M, Balaji SA, Deshpande N, et al. AMP- activated protein kinase promotes epithelial- mesenchymal transition in cancer cells through Twist1 upregulation. J Cell Sci. 2018;131(14):jcs208314. doi:10.1242/jcs.208314
Choi CH, Chung JY, Cho H, et al. Prognostic Significance of AMP-Dependent Kinase Alpha Expression in Cervical Cancer. Pathobiology. 2015;82(5):203-211. doi:10.1159/000434726
Han K, Pintilie M, Lipscombe LL, Lega IC, Milosevic MF, Fyles AW. Association between Metformin Use and Mortality after Cervical Cancer in Older Women with Diabetes. Cancer Epidemiol Biomarkers Prev. 2016;25(3):507-512. doi:10.1158/1055-9965.EPI-15-1008
Hanprasertpong J, Jiamset I, Geater A, Peerawong T, Hemman W, Kornsilp S. The Effect of Metformin on Oncological Outcomes in Patients With Cervical Cancer With Type 2 Diabetes Mellitus. Int J Gynecol Cancer. 2017;27(1):131- 137. doi:10.1097/IGC.0000000000000855
Morales DR, Morris AD. Metformin in cancer treatment and prevention. Annu Rev Med. 2015;66:17-29. doi:10.1146/annurev-med- 062613-093128
Ding L, Liang G, Yao Z, et al. Metformin prevents cancer metastasis by inhibiting M2-like polarization of tumor associated macrophages. Oncotarget. 2015;6(34):36441-36455. doi:10.18632/oncotarget.5541
Chiang CF, Chao TT, Su YF, et al. Metformin- treated cancer cells modulate macrophage polarization through AMPK-NF-κB signaling. Oncotarget. 2017;8(13):20706-20718. doi:10.18632/oncotarget.14982
Wang JC, Li GY, Li PP, et al. Suppression of hypoxia-induced excessive angiogenesis bymetformin via elevating tumor blood perfusion. Oncotarget. 2017;8(43):73892-73904 doi:10.18632/oncotarget.18029
Hwang YP, Jeong HG. Metformin blocks migration and invasion of tumour cells by inhibition of matrix metalloproteinase-9 activation through a calcium and protein kinase Calpha- dependent pathway: phorbol-12-myristate-13- acetate-induced/extracellular signal-regulated kinase/activator protein-1. Br J Pharmacol. 2010;160(5):1195-1211. doi:10.1111/j.1476-
2010.00762.x
Li WD, Li NP, Song DD, Rong JJ, Qian AM, Li XQ. Metformin inhibits endothelial progenitor cell migration by decreasing matrix metalloproteinases, MMP-2 and MMP-9, via the AMPK/mTOR/autophagy pathway. Int J Mol Med. 2017;39(5):1262-1268. doi:10.3892/ijmm.2017.2929
Xia C, Liang S, He Z, Zhu X, Chen R, Chen J. Metformin, a first-line drug for type 2 diabetes mellitus, disrupts the MALAT1/miR-142-3p
sponge to decrease invasion and migration in cervical cancer cells. Eur J Pharmacol. 2018;830:59-67. doi:10.1016/j.ejphar.2018.04.027
Yung MM, Chan DW, Liu VW, Yao KM, Ngan HY. Activation of AMPK inhibits cervical cancer cell growth through AKT/FOXO3a/FOXM1 signaling cascade. BMC Cancer. 2013;13:327. doi:10.1186/1471-2407-13-327
Kwan HT, Chan DW, Cai PC, et al. AMPK activators suppress cervical cancer cell growth through inhibition of DVL3 mediated Wnt/β- catenin signaling activity. PLoS One. 2013;8(1):e53597. doi:10.1371/journal.pone.0053597
Bahrami A, Hasanzadeh M, Hassanian SM, et al. The Potential Value of the PI3K/Akt/mTOR Signaling Pathway for Assessing Prognosis in Cervical Cancer and as a Target for Therapy. J Cell Biochem. 2017;118(12):4163-4169. doi:10.1002/jcb.26118
Hakimee H, Hutamekalin P, Tanasawet S, Chonpathompikunlert P, Tipmanee V, Sukketsiri W. Metformin Inhibit Cervical Cancer Migration by Suppressing the FAK/Akt Signaling Pathway. Asian Pac J Cancer Prev. 2019;20(12):3539- 3545. doi:10.31557/APJCP.2019.20.12.3539
Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B. Metformin: from mechanisms of action to therapies. Cell Metab. 2014;20(6):953-966. doi:10.1016/j.cmet.2014.09.018
Dowling RJ, Niraula S, Stambolic V, Goodwin PJ. Metformin in cancer: translational challenges. J Mol Endocrinol. 2012;48(3):R31-R43. Published 2012 Mar 29. doi:10.1530/JME-12- 0007
Stang M, Wysowski DK, Butler-Jones D. Incidence of lactic acidosis in metformin users. Diabetes Care. 1999;22(6):925-927. doi:10.2337/diacare.22.6.925
Cetin M, Sahin S. Microparticulate and nanoparticulate drug delivery systems for metformin hydrochloride. Drug Deliv. 2016;23(8):2796-2805. doi:10.3109/10717544.2015.1089957
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2021 The Authors.
This work is licensed under a Creative Commons Attribution 4.0 International License.